

Summer School 2015 on Smart Energy Systems & Entrepreneurship EIT ICT Labs & KIT. Karlsruhe, Germany. July 30th, 2015

Dr. David von Oheimb, Siemens AG, Corporate Technology

What is IT Security?

- What is security about? It's about bad things not happening.
- Where is the difference to safety? It's in the source of bad things.
- Safety protects against accidents due to technical failure or human mistakes.
- Security protects against evil due to malicious human intentions.
- Which is harder to achieve? Security.
- Why? Because people can be very creative and determined to search for and exploit vulnerabilities, while safety failures happen by chance.
- Is it simpler to attack or defend? Attack.
- Why? Only one weak point is needed to break in.
- What is IT security? Protection of data against unauthorized access.

Page 2

IT Security may impact safety – Example: Boeing 787

Situation

- Aircraft flight is controlled by avionics
- Malfunction may lead to catastrophic accidents
- Today's avionics is software controlled
- Sabotage of software may cause malfunction
- Avionics software can be updated via networks
- Transmission of software might be attacked
- Classical IT security threatens flight safety!

Measures

- Boeing R&D developed BEDS (Boeing Electronic Distribution of Software)
- Siemens CT assisted Boeing R&D in analyzing the security threats,
 designing proper countermeasures, and defining certification approach

Threat Agents and Their Motivation

- How does one call people threatening IT security?
- Commonly they are called hackers.
- Security folks speak of attackers.
- Researchers tend to call them adversaries.
- What is the aim of attackers?
- Script kiddies typically want to have fun.
- Criminals typically want to steal money.
- Insider attackers typically want to take revenge.
- Political activists want to control decisions.
- Terrorists want to threaten society.
- Spies want to gain (technical/economic/organizational) knowledge.
- Secret services want to gain knowledge and influence at large scale.

Vulnerabilities, Threats, Risk, and Aim of Security

- A vulnerability is a weakness (loophole) that could be used to do harm.
- An exploit is the use of a vulnerability for performing an attack.
- An attack is an activity exploiting vulnerabilities, typically to do harm.
- Attack potential is the strength of an attack (amount of ability, energy, motivation).
- Impact is the amount of harm to assets achieved via a successful attack.
- Risk is the amount of damage to be expected:
 Probability of successful attack × Impact
- Security aims at minimizing risk, by
 limiting potential impact, or better by
 minimizing vulnerabilities and/or opportunity,
 thus lowering the probability of successful attacks.

Residual risk is unavoidable – there is no 100% security!

Page 5

Assets protected by owners and threatened by attackers

Process to assure holistic security

Any of these activities can be chosen as entry point. In each of them, mistakes easily lead to an insecure system.

Analysis step 1: Know your system and its assets

BEDS is a system for storage and distribution of airplane assets, including *Loadable Software Airplane Parts* (LSAP) and airplane health data

Analysis Step 2: Know your enemy and the threats to your assets

Corruption/Injection

Wrong Version

Diversion

Disclosure

Page 9

Security Goals

IT security aims at protecting data assets against threats. Classical goals:

- C Confidentiality: Information must be disclosed to certain parties only Example: personal information to be kept secret
- Integrity & Authenticity: Information must be changed by certain parties only; fake or manipulation must be detectable

Example: Signed contract must not be alterable

A Availability: Access by legitimate parties to asset must not be blocked Example: Web server should remain usable.

Further ones exist, e.g.:

Authorization: Only privileged parties must be able to perform action.

Non-Repudiation: Parties must not be able to deny certain actions.

Example: Buyer is accountable for accepted deal.

Design Step 1: Define security objectives

Security Policies and Mechanisms

A **security policy** describes in sufficient detail who is allowed to do what.

Everything not allowed is considered an attack and must be prevented.

How to protect against illicit access?

Direct/simple approach: Use a gatekeeper to enforce the policy.

Example: File access control by operating systems

Problem: The power/domain of the gatekeeper doing access control is limited.

Example: The operating system cannot protect while not running.

Advanced approach: Use cryptography such that access requires knowledge.

Example 1: Encrypt a secret with a key known only to the group allowed to know the secret.

Example 2: Digitally sign a document such that nobody else can fake the signature but everybody can verify it.

Symmetric Cryptography

Any number of parties (e.g., A and B) share a key K.

A encrypts secret X with K, sends it, B can decrypt it: A \rightarrow B: $\{X\}_{K}$

Two problems: How to distribute the shared key without revealing it?

Idea: Use other channel protected in different way.

A better solution will follow.

How to make sure that K cannot be guessed/tried out?

Use sufficiently long key and good random number generator.

Algorithms: DES – outdated, key length 56 bits

AES – current, key length 128 or 256 bits

Hashing

Can one use symmetric encryption also for integrity protection for data Y?

Yes, use a checksum h() of K and Y, and add it: A \rightarrow B: Y. h(K. Y)

Two caveats: Make sure that h is not invertible, i.e., one cannot deduce X from knowing h(X).

Make sure that h is pre-image resistant, i.e., different X and X' should lead to different h(X) and h(X').

Cryptographically strong checksums are called hashes.

Algorithms: MD5 – outdated, result length 128 bits

SHA – current, result lengths 128 or 256 bits

General problem with symmetric integrity protection (aka HMAC)? Everyone knowing K can produce h(K, Y) — this is not good as a signature.

Asymmetric Cryptography

Each party A has a pair of a private key pri V(A) and public key pk(A).

The public key can be known to everyone, while the private key must not be shared with anyone.

If A sends secret X encrypted with pk(B), only B can decrypt it using his corresponding private key: $A \rightarrow B$: $\{X\}_{pk(B)}$

This partly solves the key distribution problem: A can freely access pk(B).

Yet one problem remains: the authenticity of pk(B).

Asymmetric cryptography allows for real digital signatures:

If A sends Y with its hash encrypted with priv(A), written $A \to B$: {Y} priv(A) everyone can verify it using pk(A), but nobody can fake it!

Algorithms: RSA – key length 1024 or 2048 or 4096 bits

ECC – key length 80 or 112 or 160 bits has same strength

Digital Certificates and PKI

Signatures can be used also for solving the authenticity the public key of B:

A third party C signs a **certificate** with name B and pk(B): {B. pk(B)} priv(C)

Such a trusted third party is called a Certificate Authority (CA).

For sending secrets to B or verifying a signature of B, use pk(B), where its authenticity is verified using B's certificate.

To verify in turn B's certificate, pk(C) must be trusted or itself be verified using a certificate for C, issued by another CA, until reaching a trusted root CA.

Typically, certificates have a validity period and possibly further attributes.

Standards: X.509 – defines format of large variety of attributes

Certificates need to be regularly updated and might be revoked, this their status is non-trivial to check.

The set of services handling all this is called Public-Key Infrastructure (PKI).

Privacy is Tricky. Example: Location Data, e.g., From Smartphone

 If I have your location data over some time, I can tell:

How to support privacy

Principle of data sparingness: Only give as much data as needed, to as little parties as possible.

Frequent Security Mistakes

What if a **programming error** anywhere in SW leads to a severe vulerability?

- Many such examples exist: buffer overflows, missing input validation, ...
- Why employ the best programmers if you forgot an important requirement?
- What is any security mechanism worth if it can be **circumvented**?
- For instance, critical web server data may be accessible without login.

What Should **NOt** Happen ;-)

A new device was found.

Device: Airbus A 310.

Shall auto-configuration be started?

start

cancel

Frequent Security Mistakes

What if a **programming error** anywhere in SW leads to a severe vulerability?

- Many such examples exist: buffer overflows, missing input validation, ...
- Why employ the best programmers if you forgot an important requirement?
- What is any security mechanism worth if it can be **circumvented**?
- For instance, critical web server data may be accessible without login.
- What does a decent security mechanism help if is wrongly implemented?
- Suppose the signature function uses the same test key on all systems.
- Why use a strongest crypto algorithm if secret keys can be leaked?
- E.g, due to differential power analysis (DPA)
- What if your security mechanism has a design flaw?
- See Needham-Schroder Protocol example

Needham-Schroeder Public Key Protocol

- [Needham & Schroeder 1978]
- http://en.wikipedia.org/wiki/Needham-Schroeder_protocol
- Goal: strong mutual authentication

- Simplified version without key server, assuming that
 A and B already know the public key of their peers:
- A \rightarrow B: {Na. A}_{pk(B)}
- B \rightarrow A: {Na. Nb}_{pk(A)}
- \bullet A \rightarrow B: $\{Nb\}_{pk(B)}$

Suffers from Man-In-The-Middle attack!

Page 22

Lowe's attack on NSPK

- [Lowe 1995] Man-in-the-middle attack by dishonest peer of A
- Requires two interleaved sessions, each with one honest party.
- In the first session, Alice talks with some party, e.g. Chuck, who in fact is an adversary, also called intruder.

```
1. 1 A - {Na. A}<sub>pk(C)</sub> -> C

2. 1 C(A) - {Na. A}<sub>pk(B)</sub> -> B

2. 2 C(A) <- {Na. Nb}<sub>pk(A)</sub> - B

1. 2 A <- {Na. Nb}<sub>pk(A)</sub> - C

1. 3 A - {Nb}<sub>pk(C)</sub> ---> C

2. 3 C(A) - {Nb}<sub>pk(B)</sub> --> B
```

- In the second session, Bob thinks that he was contacted by Alice but actually talks to A via the intruder.
- Therefore, anything echoed by A, like Nb, gets leaked to the intruder.
- The protocol can be fixed by adding B's name to the 2nd message: {Na. Nb. B}_{pk(A)}

AVANTSSAR

avantssar.eu

Model-checking SOA security research project AVANTSSAR¹

¹ Automated ValidatioN of Trust and Security of Service-oriented Architectures

FP7-2007-ICT-1, ICT-1.1.4, STREP project no. 216471 Jan 2008 - Dec 2010, 590 PMs, 6M€ budget, 3.8M€ EC contribution

SIEMENS

How Not To Do Security ;-)

