Security Architecture and Formal Analysis of an Airplane Software Distribution System

David von Oheimb ¹
Monika Maidl ¹
Richard Robinson ²

¹ Siemens Corporate Technology, Munich
² Boeing Phantom Works, Seattle

ICAS/AIAA ATIO 2008 Congress
Anchorage, USA, 15 Sep 2008
Overview

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion
Airplane Asset Distribution System (AADS)

System providing secure distribution of software (aka. LSAP, parts, assets) and data from software supplier to aircraft in production or in service → **Airplane Asset Distribution System (AADS)**

More general: IT system with networked devices in the field performing safety-critical and/or security-critical tasks. Field devices require secure update of embedded software.

Transition from media-based (CD-ROMs etc.) to networked transport increases security risks due to transport over open, insecure networks.
Attacker’s objective: lower airplane safety margins by tampering software that will be executed onboard an airplane.
Overview

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion
Common Criteria (CC) for IT security evaluation

product-oriented methodology
for IT security assessment
ISO/IEC standard 15408
Current version: 3.1 of end-2006

Aim: gain confidence in the security of a system

- What are the objectives the system should achieve?
- Are the measures employed appropriate to achieve them?
- Are the measures implemented and deployed correctly?
Hybrid security assessment

- AADS usually are complex distributed systems with many components

 - Highest CC evaluation assurance levels (EAL 6-7) require formal analysis

General problems:
- Complete formal analysis too costly
- CC offer only limited support (“CAP”) for modular system evaluation

Pragmatic approach:
- Define **confined security kernel** with generic component: ASV
- **Asset Signer Verifier (ASV)** handles digital signatures at each node
- Evaluate ASV according to Common Criteria EAL4 (non-formal)
- Analyze the interaction of ASVs in a formal way (→ crypto protocol)
Asset Signer Verifier (ASV)

Each node in AADS runs an ASV instance, used for:

- **Introducing unsigned** software into the AADS,
 by digitally signing and optionally encrypting it

- **Verifying the signature** on software received from other ASVs,
 checking integrity, authenticity and authorization of the sender

- **Approving** software by adding an authorized signature

- **Delivering** software out of the AADS after successfully verifying it
Overview

- Airplane Asset Distribution System
- Hybrid security assessment
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion
Formal modeling: Alice-Bob notation

\[
\text{SUP} \rightarrow \text{DIS} = \{ \text{Asset}.\{h(\text{Asset}).\text{DIS}\}_\text{inv}(\text{KSUP}).\text{CertSUP}\}_\text{KDIS} \rightarrow \text{DIS} \\
\text{DIS} \rightarrow \text{OP} = \{ \text{Asset}.\{h(\text{Asset}).\text{DIS}\}_\text{inv}(\text{KSUP}).\text{CertSUP} \quad \text{.}\{h(\text{Asset}).\text{OP }\}_\text{inv}(\text{KDIS}).\text{CertDIS}\}_\text{KOP} \rightarrow \text{OP} \\
\text{OP} \rightarrow \text{TD} = \{ \text{Asset}.\{h(\text{Asset}).\text{DIS}\}_\text{inv}(\text{KSUP}).\text{CertSUP} \quad \text{.}\{h(\text{Asset}).\text{OP }\}_\text{inv}(\text{KDIS}).\text{CertDIS} \quad \text{.}\{h(\text{Asset}).\text{TD}\}_\text{inv}(\text{KOP })\}.\text{CertOP }\}_\text{KTD} \rightarrow \text{TD}
\]

A – M → B message M sent from A to B
Asset a software item including its identity
h(M) the hash value (i.e. crypto checksum) of content M
M.N the concatenated contents of M and N
\{M\}_\text{inv}(K) content M digitally signed with private key K
\{M\}_K content M encrypted with public key K
Formal modeling: AADS node structure

\[\text{SUP} \rightarrow \text{DIS} \]
\[\text{DIS} \rightarrow \text{OP} \]
\[\text{OP} \rightarrow \text{TD} \]

SUP: software supplier with private key \(\text{inv(KSUP)} \)

DIS: software distributor with private key \(\text{inv(KDIS)} \)

OP: target operator with private key \(\text{inv(KOP)} \)

TD: target device with private key \(\text{inv(KTD)} \)

Signatures comprise hash value of asset and **identity of intended receiver**. Signatures **are applied in parallel** (rather than nested or discarded)
Formal modeling: approvals and certificates

\[
\begin{align*}
\text{SUP} & \rightarrow \{\text{Asset.}{h(\text{Asset}).\text{DIS}}\}_\text{inv}(\text{KSUP}).\text{CertSUP}\}_\text{KDIS} \\
\text{DIS} & \rightarrow \{\text{Asset.}{h(\text{Asset}).\text{DIS}}\}_\text{inv}(\text{KSUP}).\text{CertSUP} \\
& \quad \quad .\{h(\text{Asset}).\text{OP}\}_\text{inv}(\text{KDIS}).\text{CertDIS}\}_\text{KOP} \\
\text{OP} & \rightarrow \{\text{Asset.}{h(\text{Asset}).\text{DIS}}\}_\text{inv}(\text{KSUP}).\text{CertSUP} \\
& \quad \quad .\{h(\text{Asset}).\text{OP}\}_\text{inv}(\text{KDIS}).\text{CertDIS} \\
& \quad \quad .\{h(\text{Asset}).\text{TD}\}_\text{inv}(\text{KOP}).\text{CertOP}\}_\text{KTD} \\
\end{align*}
\]

- **Certificate** of a node relates its identity with its public key, e.g. certificate of supplier \(\text{SUP} : \text{CertSUP} = \{\text{SUP.KSUP}\}_\text{inv}(\text{KCA})\).
- Certificate authority (CA) with private key \(\text{inv}(\text{KCA})\).
- Certificates are **self-signed or signed by CA**.
- Locally stored sets of public keys of trusted ASVs and CAs.
- Approval information partially modelled: **operator** specifies **target**.
Overview

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion
Formal validation: goals

Show asset **authenticity**, **integrity** and **confidentiality**:

- assets accepted by target have indeed been sent by the supplier
- assets accepted by target have not been modified during transport
- assets remain secret among the ASV instances
- asset authenticity and integrity also hop-by-hop

Correct destination covered:

- Name of the intended receiver in signed part, checked by target.
 Signature of the operator acts as installation approval statement.

Correct version partially covered:

- Integrity of version info, *checks delegated* to ASV local environment.
Formal validation: remarks

Modelling:
- Alice-Bob notation not detailed and precise enough
- Use the specification language of the AVISPA Tool: HLPSL
- Asset Signer Verifier (ASV) as parameterized role, multiple instances
- AADS as communication protocol linking different ASV instances
- Multiple protocol sessions describing individual SW transports

Checking:
- At the level of detail of the model, all goals are met
- Modelcheckers at their complexity limits, due to
 - parallel signatures, only the latest one being checked
 - multiple instances of central nodes (e.g. manufacturer)
 - ...?
Overview

- Airplane Asset Distribution System
- Hybrid security assessment and architecture
- Formal crypto protocol model
- Validation with AVISPA Tool
- Conclusion
Conclusion

- Challenges for AADS development
 - complex, heterogeneous, distributed system
 - security is critical for both flight safety and airline business

- Experience with AADS evaluation
 - Common Criteria most widely accepted methodology available
 - Problem of compositional security evaluation not solved
 - Use formal analysis where cost/benefit ratio is best
 - Highly precise design and documentation: assumptions, requirements
 - Shape system architecture to support security evaluation

- Future steps
 - Trust management aspects including Public Key Infrastructure (PKI)
 - Configuration management with installation instructions and reports